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Introduction to Fourier Transform 
Examples of FT
The Discrete Fourier Transform (DFT)
Two Dimensional Transform

The FT is used in:
linear systems analysis,
antenna studies,
optics,
random process modelling,
probability theory,
quantum physics, 
boundary-value problems
it  has been very successfully applied to 
restoration of astronomical data
wide range of application in image 
processing problems

Introduction to FT(1)
The Fourier transform, in essence, 
decomposes or separates a waveform 
or function into sinusoids of different 
frequency which sum to the original 
waveform. It identifies or 
distinguishes the different frequency 
sinusoids and their respective 
amplitudes.



Example

Figure 1. Three cosine waves with amplitudes A1, A2, and A3 combine to 
form a composite signal with amplitude A1 + A2 + A3.

Introduction to FT(2)
The Fourier Transform is an important image 
processing tool which is used to decompose an image 
into its sine and cosine components. 
The output of the transformation represents the 
image in the Fourier or frequency domain, while the 
input image is the spatial domain equivalent. In the 
Fourier domain image, each point represents a 
particular frequency contained in the spatial domain 
image. 
The Fourier Transform is used in a wide range of 
applications, such as image analysis, image filtering, 
image reconstruction and image compression. 

Frequency and Special Domains
For simplicity, assume that the image I being considered is formed by projection 
from scene S (which might be a two- or three-dimensional scene, etc.). 

Thus,

The frequency domain is a space in which 
each image value at image position F 
represents the amount that the intensity 
values in image I vary over a specific 
distance related to F. 
In the frequency domain, changes in image 
position correspond to changes in the 
spatial frequency, (or the rate at which 
image intensity values) are changing in the 
spatial domain image I. 

Example of Frequency and Special 
Domains

Let us suppose that there is the value 20 at the 
point that represents the frequency 0.1 (or 1 
period every 10 pixels). This means that in the 
corresponding spatial domain image I the 
intensity values vary from dark to light and back 
to dark over a distance of 10 pixels, and that the 
contrast between the lightest and darkest is 40 
gray levels (2 times 20). 



How it works?
Let f(x) be a continuos
function of a real variable 
x.

The FT of f(x) is 
defined as:

Given F(u), f(x) can 
be obtained by using 
the Inverse FT:

How it works?
The FT of real function 

is generally complex and 
can be presented as

where R(u) and I(u) are 
real and imagery 
components of F(u). 
Thus we can re-write 
equation in the 
following form:

How it works?
The magnitude function |F(u)| is 

called the Fourier spectrum of  f(x)
and ф(u) its phase angle (phase).
The square of the spectrum is 
commonly referred to as the power 
spectrum.  The term spectral density
also is commonly used to denote the 
power spectrum. 
The variable u appearing in the FT 
often is called the frequency variable
This name arises from expression of 
the exponential term,             -
using Euler’s formula – in the form:

Conditions. 

The FT pair exists if f(x) is continuous and 
integrable and F(u) is integrable. 

Which means that it exists for all real life 
signals.  



Example

Figure 1. Three cosine waves 
with amplitudes A1, A2, and A3 
combine to form a composite signal 
with amplitude A1 + A2 + A3.

Figure 2. Fourier transform of 3-
cosine composite signal in Figure 1 
yields three pairs of real, even delta 
functions with corresponding 
amplitudes A1/2, A2/2, and A3/2.

Example

Since the original signal is real and even the 
Fourier transform must be real and even. 
Three pure cosine oscillations summate to 
make up s(t) so only three spectral lines 
are present in the Fourier transform, S(f). 
These spikes can be represented by Dirac 
delta functions that are functions of 
frequency, not of time. 

Positive and Negative Frequencies

FT( A1cos 2pf1t ) is 

There are values (spectra lines) at both 
positive and negative frequencies

In this case they appear where the delta functions 
are non-zero,
i.e., where their arguments are zero, 
at f = +f1 and f = -f1. 

The concept of negative frequencies is critical for 
practical applications of digital processing 
in the frequency domain.

Concept of Negative Frequencies

The idea of negative frequencies is to 
visualize a wheel rotating in one direction 
and then reversing the direction. Rotating 
in say the counterclockwise (CCW) direction 
illustrates positive frequency and clockwise 
(CW) rotation describes negative 
frequency. The rotating wheel view is a 
perfectly correct way of interpreting the + 
and - frequencies of the complex Fourier 
spectrum.



FT of A1 Cos (2pf1t)? 

from which we can write

The inverse of Euler’s relation allows us to express the trigonometric 
functions as

and

FT of A1 Cos (2pf1t)? 

A1/2 exp{i2pf1t} ={real and imaginary parts}=
A1/2 cos (2pf1t) +A1/2 sin (2pf1t) 

The key observation is that since f = +2pf1t is an 
angle that varies linearly with time, the vectors 
exp{+i2p f1t} also vary with time.
at t = 0 the exp{+i2p f1t}vectors lie along the 
positive, horizontal axis; 
at a time t = 1 the exp{+i2p f1t} vector has 
rotated through a CCW angle of 2pf1.
At an arbitrary time t, the rotating exp{+i2p f1t} 
vector has an angle of 2pf1t CCW from the 
positive real axis. The e{-i2p f1t} vector, with the 
negative exponent, rotates similarly but in a CW 
direction.

Examples

http://130.191.21.201/multimedia/ji
racek/dga/spectralanalysis/examples
.html

The example clearly shows that the cosine function can be 
viewed as being composed of both positive (CCW) and 

negative (CW) frequency components. 



Famous FT pairs(1)

Boxcar function ↔Sinc Function

Famous FT pairs(2)

Constant Function ↔ Dirac Delta Function

Famous FT pairs(3)

Cosine Function ↔ Two real even delta function

Famous FT pairs(3)

Sine Function ↔Two imagery odd delta functions



Two variable FT

The FT can be easily extended to a function f(x,y) of 
two variables. If  f(x,y) is continuous and integrable
and F(u,v) is integrable, the following FT pair exist.

Here u and v are the frequency variables.

Two variable FT

As in one dimensional case, the Fourier 
spectrum, phase and power spectrum 
respectively are:

Conclusion

The Fourier transform is, in general, a complex 
function of the real frequency variables. As such 
the transform can be written in terms of its 
magnitude and phase. 
A 2D signal (an image) can also be complex and 
thus written in terms of its magnitude and phase. 
Both the magnitude and the phase functions are 
necessary for the complete reconstruction of an 
image from its Fourier transform.

Conclusion

Figure 1b shows what happens when Figure 1a is restored solely
on the basis of the magnitude information and 
Figure 1c shows what happens when Figure 1a 
is restored solely on the basis of the phase information 



Discrete FT
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Discrete FT

Discrete FT

The DFT is the sampled Fourier Transform
and therefore does not contain all 
frequencies forming an image, but only a 
set of samples which is large enough to 
fully describe the spatial domain image. 
The number of frequencies corresponds to 
the number of pixels in the spatial domain 
image, i.e. the image in the spatial and 
Fourier domain are of the same size. 

Discrete FT

The DFT is only usually defined for a 
discrete function f(x,y) that is 
nonzero only over a finite region, 
0<=x<=M-1 and 0<=y<=N-1,
where M by N is the resolution of the 
spatial image.

Discrete FT (1D Case)

Suppose that a continues function f(x) is 
discretized into a sequence by taking N
samples ∆x units apart



Discrete FT (1D Case)

It will be convenient in subsequent 
developments to use x as either a discrete 
or continues variable, depending on the 
context. To do so requires defining 

where x now assumes the discrete values 0,1,2,3,….N-1.
In other words, the sequence {f(0), f(1), f(2),…., f(N-1)} denote
any N uniformly spaced samples from a corresponding continue function. 

DFT Pairs

DFT Pairs

The variable u =0,1,2,….N-1 in the DFT 
corresponds to the continues transform at 
values 0, ∆u,…, (N-1) ∆u. In other words, F(u) 
represents F(u∆u). This notation is similar to 
that used for the discrete f(x), except that the 
samples of F(u) start at the origin of the 
frequency axis. The term ∆u and ∆x are related 
by the expression

∆u=1/(N∆x)

DFT(2D Case)

∆u=1/(M∆x) and ∆v=1/(N∆y)



Conclusion

A 2Dfunction is represented in a computer 
as numerical values in a matrix, whereas a 
one-dimensional Fourier transform in a 
computer is an operation on a vector.
A 2-D Fourier transform can be computed 
by a sequence of 1-D Fourier transforms. 
We can first transform each column vector 
of the matrix and then each row vector of 
the matrix. Alternately, we can first do the 
rows and later do the columns.

Separability

The discrete FT pair can be 
expressed in separable forms which 
(after some manipulations) can be 
expressed as:

F(u,v) =
1
M

F(x,v)exp[− j2πux / M]
x= 0

M −1

∑

Where: F(x,v) =
1
N

f (x,y)exp[− j2πvy /N]
y= 0

N−1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

Translation (shifting)

),()]//(2exp[),( 0000 vvuuFNyvMxujyxf −−⇔+π

f (x − x 0, y − y 0 ) ⇔ F (u,v) exp[ − j2π (ux 0 / M + vy 0 /N )]

and

Periodicity & 
Conjugate Symmetry

The discrete FT and its inverse are 
periodic with period N:

F(u,v)=F(u+M,v)=F(u,v+N)=F(u+M,v+N)

=> Only one period of the transform is 
necessary to specify F(u,v) completely in 
the frequency domain.



For real f(x,y), FT also exhibits 
conjugate symmetry:

),(),(
),(),( *

vuFvuF
vuFvuF

−−=

−−=

or

Periodicity & 
Conjugate Symmetry

=> The magnitude of the transform is centered 
on the origin.

Rotation

Polar coordinates:

ϕωϕωθθ cos     ,cos     ,sin     ,cos ==== vuryrx

Which means that:

),(),,( become ),(),,( ϕωθ FrfvuFyxf

Rotation

=> Which means that rotating f(x,y) 
by an angle θ0 rotates F(u,v) by the 
same angle (and vice versa).

),(),( 00 θϕωθθ +⇔+ Frf

Distributivity and Scaling

Distributivity only stands for addition
ℱ{ƒ₁(x,y)+ ƒ₂(x,y)} = ℱ{ƒ₁(x,y)}+ ℱ{ƒ₂(x,y)}

ℱ{ƒ₁(x,y)∙ ƒ₂(x,y)} ≠ ℱ{ƒ₁(x,y)}∙ ℱ{ƒ₂(x,y)}

For two scalars a and b
),(),( vuaFyxaf ⇔

)/,/(1),( bvauF
ab

byaxf ⇔



Average value

An average value of a 2-D discrete function 
f(x,y) is related to the Fourier transform:

)0,0(1),( F
N

yxf =

Laplacian

The Laplacian operator is useful for 
finding edges in an image.

ℱ{∇²ƒ(x,y)} ⇔ -(2π) ² (u ² + v²)F(u,v)

Convolution and correlation
Convolution

In image analysis f 
or g is image and 
the other one is 
the neighborhood 
weighting function 
(Morse).

∫
∞

∞−

−=∗ dttgtxfxgxf )()()()(

Convolution and correlation

Convolution 
theorem

Correlation 
theorem

),(*),(),(),(
),(),(),(*),(

vuGvuFyxgyxf
vuGvuFyxgyxf

⇔
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),(),(),(*),(
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⇔



Sampling

To establish the sampling conditions so 
that a continuous image can be restored 
fully.
Band limited signal: F(s)=0 for |s|>2πW
Sampling interval

W
x

2
1

≤∆

Fast Fourier Transform

FFT is simply a fast 
(computationally efficient) way to 
calculate the Discrete Fourier 
Transform (DFT).

Fast Fourier Transform

Reduces computational complexity 
of DFT algorithm from class O(n ) 
to class O(n log n).

2

Fast Fourier Transform

First FFT algorithm was developed by J.W. 
Cooley and J.W. Tukey. Published in April, 
1965. It uses divide-and-conquer paradigm 
and is based on the symmetry properties of 
the complex exponential in the definition of 
the DFT. 



Fast Fourier Transform

Implemented with many modifications, 
depending on the computational needs.
Mainly used algorithms:

Radix-2 (Cooley-Tukey)
Radix-4
Split radix
FHT (Fast Hartley Transform)
QFT
DITF

Fast Fourier Transform

There is no need to implement the 
FFT yourself. Many good FFT 
implementations are available in 
different languages. 
Microprocessor manufacturers 
generally provide optimized FFT 
implementation in their processors’ 
assembly code.

Fast Fourier Transform
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